Constrained multi-degree reduction of triangular Bézier surfaces using dual Bernstein polynomials

نویسندگان

  • Pawel Wozny
  • Stanislaw Lewanowicz
چکیده

Abstract. This paper proposes and applies a method to sort two-dimensional control points of triangular Bézier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms for multi-degree reduction of triangular Bézier surfaces with constraints, providing explicit degree-reduced surfaces. The first algorithm can obtain the explicit representation of the optimal degree-reduced surfaces and the approximating error in both boundary curve constraints and corner constraints. But it has to solve the inversion of a matrix whose degree is related with the original surface. The second algorithm entails no matrix inversion to bring about computational instability, gives stable degree-reduced surfaces quickly, and presents the error bound. In the end, the paper proves the efficiency of the two algorithms through examples and error analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal multi-degree reduction of triangular Bézier surfaces with corners continuity in the norm L2

This paper derives an approximation algorithm for multi-degree reduction of a degree n triangular Bézier surface with corners continuity in the normL2. The new idea is to use orthonormality of triangular Jacobi polynomials and the transformation relationship between bivariate Jacobi and Bernstein polynomials. This algorithm has a very simple and explicit expression in matrix form, i.e., the red...

متن کامل

Degree reduction of composite Bézier curves

This paper deals with the problem of multi-degree reduction of a composite Bézier curve with the parametric continuity constraints at the endpoints of the segments. We present a novel method which is based on the idea of using constrained dual Bernstein polynomials to compute the control points of the reduced composite curve. In contrast to other methods, ours minimizes the L2-error for the who...

متن کامل

Bezier curves based on Lupas (p, q)-analogue of Bernstein polynomials in CAGD

In this paper, we use the blending functions of Lupaş type (rational) (p, q)-Bernstein operators based on (p, q)-integers for construction of Lupaş (p, q)-Bézier curves (rational curves) and surfaces (rational surfaces) with shape parameters. We study the nature of degree elevation and degree reduction for Lupaş (p, q)-Bézier Bernstein functions. Parametric curves are represented using Lupaş (p...

متن کامل

Multi-degree reduction of triangular Bézier surfaces with boundary constraints

Given a triangular Bézier surface of degree n, the problem of multi-degree reduction by a triangular Bézier surface of degree m with boundary constraints is investigated. This paper considers the continuity of triangular Bézier surfaces at the three corners, so that the boundary curves preserve endpoints continuity of any order α. The l2and L2-norm combined with the constrained least-squares me...

متن کامل

A de Casteljau Algorithm for Bernstein type Polynomials based on (p, q)-integers in CAGD

In this paper, a de Casteljau algorithm to compute (p, q)-Bernstein Bézier curves based on (p, q)integers is introduced. We study the nature of degree elevation and degree reduction for (p, q)-Bézier Bernstein functions. The new curves have some properties similar to q-Bézier curves. Moreover, we construct the corresponding tensor product surfaces over the rectangular domain (u, v) ∈ [0, 1]× [0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2010